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ABSTRACT 

We consider connect ion-preserving actions of latt ice subgroups of SL,~R 
on compact  Riemannian manifolds,  for n >_ 3. T h e  main result gives a 

descript ion of such actions,  when d i m M  -- n % 1, as follows: Either the  

action preserves a smooth  invariant Riemannian metric  on M or it can be 

described in terms of l inear actions on the n-torus.  

0 .  I n t r o d u c t i o n  

Let G be a simple Lie group of R-rank_> 2 and F a lattice subgroup of G. Assume 

that F acts on a smooth, compact manifold M via diffeomorphisms that preserve 

some volume density. Also assume that the action is not finite, i.e. it does not 

factor through a finite quotient of F. For such setting, R. Zimmer ([Z3]) asked 

the following question: Can the action of F be described in algebraic terms, or 

do there exist genuinely (differential) topological examples? 

This issue of rigidity of actions of higher rank lattices has seen much recent 

progress, and we mention in particular the papers [H], and [KLll, [KL2], which 

bring into play ideas from the theory of hyperbolic dynamical systems. 

In the present paper we consider actions of lattice subgroups of SL,R on Rie- 

mannian manifolds and the main assumption we explore is that the group acts 

by connection-preserving diffeomorphisms. The principal ingredient in our argu- 

ment is Zimmer's superrigidity theorem for cocycles and one important step in 

the proof is to obtain a smooth version of that theorem under our assumptions. 

Before stating our results we point to the following theorem proven in [Z1]. 
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THEOREM 0.1: Let F be a lattice in SLnR, n >_ 3. 

(1) Let M be a compact manifold with d i m M  < n. Then any action o f f  on 

M that preserves a volume density and a connection is finite, i.e. is an 

action by a finite quotient of r .  

(2) Let M be a compact, connected, R/emannian manifold with dim M --- n. 

Suppose r acts on M by volume preserving, aft]he transformations. I f  the 

action is not finite, M is fiat and F is commensurable to (a conjugate of) 

SLnZ. /n particular, i f  F is co-compact, any volume preserving atone action 

on a compact Riemannian n-manifold is finite. 

The main result in the present paper  extends the above theorem as it also 

accounts for n + 1-dimensional manifolds. We show: 

THEOREM 0.2: Let M be a compact, connected, Riemannian manifold and r 

a lattice in SLnR, n > 3. Let us assume that F acts on M as a group of C °o 

diffeomorphisms preserving the Levi-Civita connection. We assume moreover 

that the action does not preserve any smooth Riemannian metric. Then, by 

possibly having to pass to a finite index subgroup ofF ,  the following holds: 

(1) I f  d i m M  = n, there exists a finite Riemannian covering M ~ of M,  a finite 

extension F' of  F, and a smooth affine action of F' on M'  lifting the r -  

action equivariantly, so that the latter (the F' action on M ' )  is smoothly 

conjugate to a linear action of F' on T n -- R n / Z  n. The diffeomorphism 

: T"  --} M ~ that  conjugates the two actions is aftlne and M is itself a flat 

torus. 

(2) I f d i m M  = n + 1, there exists as before an action ofF'  on M ~ that  lifts the 

action o f f  on M to a finite covering M ~ of M,  which is smoothly conjugate 

to a linear action on T n+l. M is a fiat manifold fibered over a fiat torus, 

whose fibers form a F-invariant family of  closed geodesics. Therefore the 

action factors through the quotient M / T  1, to which the description in (1) 

applies. 

In fact, more can be said: If r acts isometrically and the action is not finite, 

then dim(Iso(M)) >_ n 2 - 1 (see [Z3]). Our main concern, here, is the case when 

the action of r exhibits some form of hyperbolic behaviour, in which case no 

metric can be preserved. 

Theorem 0.2 will follow after we establish the proposition given below. We 

denote by T 7 the derivative map  of a function 7 and X 7 = (TT)X o 7 - 1  , for a 
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vector field X, and a diffeomorphism 7 of M. We shall say that an afllne con- 

nection V has b o u n d e d  paral le l  transport if the operator describing parallel 

transport along any path is bounded in norm by a (path independent) constant. 

PROPOSITION 0.3: Let M be a compact, connected manifold and r a lattice in 

SLnR, n >_ 3. Assume that F acts on M as a group of C ¢~ diffcomorphisms 

preserving a C 1 torsion free connection V with bounded parallel transport. As- 

sume moreover that the action does not preserve a Riemarmlan metric. Then the 

following holds: 

(1) I f d i m M  = n, M is a V-ant  torus and the action is linear in the following 

sense: There exists (i) a finite covering M'  of M (of order < 2") and a finite 

extension F ~ o f f  that lifts equivariantly the action o f f  to M ~, (ii) a frame 

of commuting C x vector fields X 1 , . . .  , X ,  on M ~, (iii) an automorphism a 

of S L , R ,  (iv) a subgroup F" o f f  ~ of index < 2 such that for all 7 E F", 

n 

x ?  = aj,( )Xj. 
j=l 

Moreover the action of F on M has a fixed point. 

(2) I f  dim M = n + 1, we have: (i) M is V-fiat and it is a fiber bundle over a nat 

n-torus whose fibers are geodesically imbedded circles T 1. The action maps 

fibers to fibers, so it factors through the quotient M / T  1, a fiat n-torus. M 

possesses a F-invariant, n-dimensional foliation transversal to the foliation 

by circles, consisting of flat leaves and carrying a C 1 smooth, F-invariant, 

transverse measure. I f  M is orientable, it is a flat n + 1-dimensional toms. 

(ii) The action is linear in the following sense: There exists a finite covering 

M ~ of M of order < 2 n+l, commuting, C 1 vector fields X1 , . . .  ,X,~+I on M ~ 

which are parallel with respect to the connection lifted from M, a finite 

extension F ~ of F (by the group of deck transformations) that acts on M ~ 

equivariantly and a group homomorphism A : F ~ ~ SLnR of the form 

a = ( a i j ) = ( ' ~  ,~0) 

where a is an automorphism of SLnR and ~1 and e2 are homomorphisms 

into {+1, - 1 } ,  so that for any 7 E F ~ 

n+l  

X'L = ~ A j i (7 )X j .  
j = l  
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Moreover, by possibly having to pass to a aqnite index subgroup of F, the 

action of  F on M has a £axed point. 

Remarks 0.4: 1. We expect that a result similar to Theorem 0.2 and Proposition 

0.3 should hold for dim M < N,  where N is the minimum integer > n equal to 

the dimension of some representation of SLnR (the fibers of the foliation over M 

would be totally geodesic, compact submanifolds such that the quotient would 

still be a flat torus). In fact, most of the argument used below applies to this 

case and only at the end, in section 4, we use k = 1 in order to characterize the 

holonomy maps of that  foliation as the Poincar6's return map of a flow. This 

device introduces technical simplifications but  does not seem to be essential to 

the proof. 

2. The reason for assuming that the action preserves a Riemannian connection 

(or a connection with bounded parallel transport,  as in the proposition) instead 

of a more general affine connection can be seen in Lemma 2.4. We believe that  

the property of having bounded parallel transport is automatically verified under 

the assumptions of the theorem. We plan to expand on this remark in a future 

work .  

3. Many of the ideas employed here can be made to work for a C ° connec- 

tion, and it is natural to ask whether the theorem could be proven under this 

weaker assumption. Thus, flatness would have to be characterized in terms of 

the holonomy group and the linearizing frame in Proposition 0.3 would be only 

continuous. From such a C ° frame one could try to derive (by an argument per- 

haps similar to the one shown at the end of this section) a C ° conjugacy between 

the initial action and a linear action. Results in [H] or [KL2] then will imply that 

the conjugacy is actually C °°. 

4. Another question that arises is whether the n-dimensional foliation, referred 

to in Proposition 0.3 item (2), has a closed leaf. In that case it would follow from 

the proof of the proposition that all leaves are closed. One could then try to 

show that M is covered by a product T" x T 1 and that the action decomposes 

as a product (F acting finitely on T 1). 

5. At moments along the proof there arises the need to orient certain line fields 

and find fixed points for the actions. These are the main reason for complicat- 

ing the statements of the above theorems by introducing finite coverings, finite 

extensions of F, and subgroups of finite index. Perhaps a more careful analysis 

will render some of these details unnecessary. II 
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We conclude this section with a simple remark that shows how Theorem(0.2) 

is reduced to Proposition(0.3). 

Denote by ~Y: M'  --* M I the flow of a vector field Y on M e. Since the C 1 

vector fields Xi  are linearly independent and commute, we obtain a locally free 

action of R n+l on M~: 

: R n+l × M'  --, M'  

~ ( t l , . . . , t n . t . l , X )  = ~X,  O . . - o ~ X ~ + l l ( a f  ) 

By choosing x0 E M and considering its Rn+Lorbit ,  we obtain a covering map 

p : R  n+l ~ M', p ( t l , . . . , t n + l ) = ~ ( t l , . . . , t n + l , Z o )  

Since M'  is compact, the isotropy subgroup A of z0 is a lattice of R n+l, hence it 

is isomorphic to Z "+1. We thus obtain a diffeomorphism T n+l ~ Rn+1/A --, M. 

If we choose z0 to be a fixed point for the action, then the diffeomorphism 

constructed above is the conjugating diffeomorphism claimed in Theorem 0.2. 

We thank S. Adams for suggesting several improvements on the original draft 

and R. Zimmer for proposing the problem and for many helpful discussions. 

1. Oseledec's multiplicative ergodic theorem 

One main ingredient in our proof is Oseledec's theorem. The following version is 

taken from [W, Theorem 10.4, p.234]. 

Given a differentiable manifold M and a homeomorphism f :  M ~ M, denote 

by B the a-algebra of Borel subsets of M and by .hA(M, f )  the set of all f-invariant 

probability measures on B. 

PROPOSITION 1.1: Let f:  M ~ M be a C 1 diffeomorphism of  a compact, 

smooth manifold M of dimension m. Choose a Riemannian metric on M and 

let I1" II denote its norm. There exists A E B such that f (A)  = A, p(A) = 1 

for all p E .A4( M , f ) ,  and the following properties hold: There exist measurable, 

f-invariant functions s: A --* { 1 , . . . , m } ,  Xi: A --, R where 1 < i < s, and a 

measurable decomposition 

TM[A = E1 ~ " "  ~ E ,  

of the tangent bundle over A into f-invariant subbundles (T f . Ei = Ei o f )  such 

that for all ~c E A, all v E El(x)  \ {0}, 1 < i < s(x) ,  we have 

lim ! log  IITf2vll = x~(~). 
n---* 4-o0 n 
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The above decomposition and the functions Xi are unique and do not depend on 

the Riemannian metric chosen. 

The above decomposition is called the Ose ledec  d e c o m p o s i t i o n  of f and 

the functions Xi, its Lyapunov exponents. 
It can be shown that if instead of jr we have k commuting Cldiffeomorphisms 

f l , . . . ,  fk, there exists a Oseledec decomposition common to all of them, in the 

following sense. Denote by ,4 the group generated by { f l , . . .  , fk} and by ,b4 = 

.A4(M, ,4) the set of probability measures on B invariant under each fi. Then 

there exists A E B, f (A)  = A for all f E .4, p(A) = 1 for all p E .M and a 

measurable decomposition 

TMIA = E1 ~ ""  @ Eo 

such that  for each f E A having Oseledec decomposition T M  = F1 ~ . . .  ~ Fk we 

have 

F~ = ( ~  Ek, Z~ c {1, . . . ,s) .  

It will be helpful also to view Oseledec's theorem in a form that applies to cocy- 

des. First we give a few definitions. We denote by F(M)  the bundle of all linear 

frames on TM.  Each frame wiU be regarded as a linear isomorphism (~: R "  --} 

TU z  for some x in i .  The base point projection p: F(M)  --} M, p(a) = x, 

defines a GLnR-principal bundle. Let p E .hd(M, f )  and a: M --~ F(M)  a Borel 

section of this bundle. Define a coeycle A: Z x M --} GLmR as follows: 

Tf~ o [~(~)1 = ~(fk~)  o A(k, ~). 

Since f is a diffeomorphism of a compact manifold, we can choose tr so that 

the positive parts log + IIA(+X,-)II of log IIA(+I,.)II are integrable, i.e. belong to 
L~(g, B, M). It now follows from Oseledec's theorem, as stated in [R], that  there 

exists an / - invar ian t  set A E B,#(A) = 1, and for each x E A a decomposition 

R ~ = w~(x) ~ . . .  ¢ wo(,)(x) 

that depends measurably on x, for which 

lira 1_ log IIA(~, ~)~II = x~(~) 
n---*4-oQ rz 
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for 0 # u E Wi(x). Moreover A(m,  x )Wi(x)  = Wi( frax)  for all x • A. The spaces 

Ei(x) = or(x.)Wi(x) C TM~ are the ones given in the previous proposition. Note 

that if A takes values in a compact subgroup of GLmR, all Lyapunov exponents 

vanish. 

Suppose that the cocycle A has the form 

(a,0,, ,) A = A(2) 

where A O) and A (2) are cocycles taking values in GLkR and GLm-kR respec- 

tively. Then it can be shown that the Lyapunov exponents of A are those of A W 

and A (2). 

At one point we shall need to consider a section a: M ~ F ( M )  whose associ- 

ated cocycle A may have possibly nonintegrable log + IIA(+I, ")ll. The following 

lemma will be needed. 

LEMMA 1.2: Let M be a compact, smooth manifold, f: M ~ M a C 1 ditTeo- 

morphism and/~ E A4(M, f ) .  Let a: M ~ F ( M )  be a Bore1 section of the frame 

bundle over M and A: Z × M ~ GLmR the associated cocycle for the Z-action 

defined by f~ Assume that there exists an f-invariant set f~ E B, #(f~) = 1 and, 

/'or each x E f~, a decomposition 

such that 

Xi(Z) ae= f lim l logllA(n,z)ull 
n---*q-cx~ 17, 

exists and is the same t'or each u E Wi(x) \ {0}. Then, defining Ei(x)  = 

a(x)Wi(x) ,  we have: The Oseledec decomposition for f agrees i~-edmost ev- 

erywhere with E1 ~ ""  @ E ,  and the Lyapunov exponent of vectors in Ei is 

Xi , i  = 1 , . . .  ,s. 

Proof: The issue here is simply to verify that for/~-a.e, x and all u E W~(x)\  {0} 

lim ! log IITY2 ( )=II = 
n ---* 4- ¢¢ rt  

knowing that 

lim I log IIA(n, x)ull = Xi(x). 
n- - - ,4 -~  r t  
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For each e > 0 we can find a subset f~, C ~ such that  #(f l , )  > 1 - e and aln, 
takes values in a compact subset of F(M). In particular, on f~, a is bounded in 

the following sense: With respect to some Riemannian metric on M with norm 

H" ]] (and denoting by 1]. lie the Euclidian norm in Rm), there exists a constant 

c >_ 1 such that for all u E R ra and x E fl~ 

~-Ilull~ < II~(x)~ll < cllull~. 
C 

Set ~2~ = ~ n A, where A is given in Proposition (1.1). For any x E ~ ,  and 

u E Wi(z) \ {0} the limits 

lim -llogllTf~'~(x)ull 
n---*-I- ~ n 

exist as is assured by Oseledee's theorem (note that the limits exist for all u E 

R "  \ {0}). So it suffices to verify their values for some subsequenee ni ~ -4-oo 
as i ~ -4-oo. According to Poincar~'s recurrence Theorem, for a.e. x E ftc there 

exists a doubly infinite sequence {hi : i E Z} such that fn,(x) E f~,. Now, by 

definition of A, definition of A, 

l llA(n,x)ull <_ IlT f~" a(x)ull < cllA(n,z)ull. 

This implies 

from which (and since e > 0 is arbitrary) the lemma follows. 

1 1 logllA(n,,~)ull[ < 1 logo, I~ log IITfZ'~(~)ull - ~ n~ 

II 

2. I n v a r i a n t  c o n n e c t i o n s  

Let M be a smooth manifold and p: E ---* M a smooth real vector bundle over M 

of rank k. By an a u t o m o r p h i s m  of E we mean a diffeomorphism f of E that  

maps fibers into fibers and the restriction to each fiber is a linear isomorphism. 

In particular there is a diffeomorphism f of M such that p o 7 = f o p. 

Denote by C"(E) the space of C r sections of E and consider a connection 

V: Cr+I(E) ---* C~(T*M ® E). 

We shall use the following notation: Given X E C"(TM), ~ E Cr+ l (E) ,  and ] 

an automorphism of E covering the diffeomorphism f :  M --* M, we write 

X l = ( T f )  o x o f - 1 ,  ~ !=7~of -1 ,  ( V J ' ) x ~ = ( V x y ~ f ) l - ' .  
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An automorphism 7 is said to be af l tne  if V ! = V. 

Denote by F(E) the GLkR-principal bundle of frames of E ,  a f rame  a • F(E)  

being a linear isomorphism ~: R k --* Ex, x • M. The base point map  will be 

denoted p: F ( E )  --~ M,  p(tr) = x. Let F be a group of automorphisms of E 

and let a: M ~ F ( E )  be a section of the frame bundle. Let A: F x M ~ GL~R 

denote the corresponding cocycle, so that  for all ~, • F and x • M 

a'~(z) = ~ o  a ( 7 - ' x )  = a(z)  o A ( 7 , 7 - ' x ) ,  

(the first equality defines a 7 and the second one defines A) and the cocycle 

relation 

A(7172, x) = A(71 , 72x) o A(72, x) 

holds. 

LEMMA 2.1: Let M be a connected, smooth manifold, E ~ M a smooth vector 

bundle over M of rank k, and V a connection on E.  Let F be a group of afflne 

automorphisms of  E and a: M ~ E a C 1, V-parallel section of  F (E) .  Then 

there exists a group homomorptffsm A: F --+ GLkR such that for any 7 E F, 

o "'t = a o A(7). 

Proof." We need only check that  the cocycle A does not depend on x. For any 

X • C°° (TM ) ,  write Y = X ~- '  , 7 • F. Then, if we set A~(x)  = A ( 7 , 7 - 1 x )  and 

I:xA.~ = the Lie derivative of A~ along X ,  

0 = ( v r ~ )  , = V x ~  , = V x ( ~  o A , ) ,  

= ( V x a )  o A.f + a o £ x A . .  

= a o £ x A -  I. 

Therefore £ x A ~  = 0 for all X.  So, as M is connected, A-¢ is constant. | 

Let V be a C r (r > O) connection on T M ,  for a smooth manifold M.  Given 

a C 1 pa th  I: [tl,t2] ~ M,  denote by Pt: TM~(tD ~ TMt(t2) the parallel t rasport  

operator  along I. We say that  V has b o u n d e d  pa ra l l e l  t r a n s p o r t  if, for some 

Riemannian metric on M, there exists a constant C > 1 such that  for any C 1 

pa th  l and vector Z E TMl(t~), we have [[P~Z[[ _< C][Z][. It immediately follows 

that  

~ l l z l l  < Itp~zll < cllzll. 
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(Of course, if V is Riemannian we can take C = 1 as P is then an isometry.) 

We recall that  a density on an m-dimensional manifold M is locally the absolute 

value of an m-form. 

LEMMA 2.2: Let M be a compact, connected, smooth manifold and r a group 

of  diffeomorphisms of  M. Assume that the diffeomorphisms are atBne /'or a 

C ~ (7" >_ O) connection V on T M  having bounded parallel transport. Then r 

preserves a V-parallel volume density which is Cr-differentiable. 

Proof." Consider the line bundle p: E = A " ( T * M )  ~ M, m = d i m M .  Given 

v E E \ {0}, z = p(t,), and any C 1 loop I: [0,1] ~ M based at x, we claim that  

PW = +t,. 

In fact, define c by the equation P t v =  ct,. Then if l,, denotes the loop that  

turns rt times around l, we have PI, t, = c"t,. But since V has bounded parallel 

t ransport ,  we must have c = -4-1. In this way, we can define a density p on M by 

parallel t ransport ing t, to all other points in M. By construction p is V-parallel. 

Lemma 2.1 implies that  for all f E r ,  p !  = c'p, where c' = c'(f)  is a positive 

constant. But since M is compact and f a diffeomorphism, 

o < J p / = / M p < o o ,  

hence c' = 1. Tha t  p is C r follows from the fact that  parallel t ransport  is locally 

determined by a linear system of O.D.E.s with C r coefficients (the Cristoffel sym- 

bols of the C r connection) and one has C r dependence of solutions on parameters.  

| 

LEMMA 2.3: Let f: M --* M be a diffeomorphism preserving a C o connection V 

on T M .  Let l: [tt, t2] --* M be a C 1 path. Then 

Tf~o~ ) o Pz = P m  o Tfz01). 

Proof." Follows immediately from V l = V. | 

LEMMA 2.4: Let f: M --, M be a diffeomorphism of a connected, compact, 

smooth manifold M. Assume that f preserves a C ~ connection V (r >_ O) with 

bounded parallel transport. Then the Oseledec decomposition of f is defined 

everywhere and is V-parallel. In particular, it is a C~-decomposition. 

Proof." Let z E A, A as in Proposition (1.1). Let X1, . . .  ,Xo be the exponents at 

z and T M ,  = E l ( z ) ~ . . - ~  E , ( z )  the Oseledec decomposition at x. Let V be any 
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other point in M and l: [tl,t2] ---* M a smooth path connecting z to y. Denote by 

Ei(y) the parallel transport of Ei(x) along I. Then for every Z E Ei(y), Z ~ O, 

we can find Z' E Ei(x) \ {0} such that,  for all integers n 

T f ~ Z  = Tf~PIZ'  = P I . , t T f ~ Z '  

(where the second equality is due to Lemma 2.3). Since V has bounded parallel 

transport,  there exists C > 1 such that for all integers n 

cIITY"~Z'II < IIPs.otTf"~Z'll < CIITf:Z'll. 

Therefore -~llTf~X "Z'll < IITf~Zll <_ CllTf2Z'll , from which we obtain 

lim -1 log IITf Zll = xi. 
n--*4-oo n 

In particular, the paraltel transport  of Ei(x) to y does not depend on the path 

chosen between z and y since the characterization of Ei(y) given by the last 

equation does not involve the path. To establish C r differentiability we invoke, 

as in Lemma 2.2, the C r dependence of solutions of O.D.E.s on parameters. | 

3. Zimmer's superrigidity t h e o r e m  for  cocycles 

As before, we denote by p: F(M)  --~ M the frame bundle over a smooth, m- 

dimensional manifold M. If F is a group of diffeomorphisms of M, it also acts 

by automorphlsms of F(M):  

(7, a) e F x F(M)  ---* TTz o a e F(M),  

where z = p(a) and we recall that a is viewed as a linear isomorphism R m --* 

TMz.  Let A: F x M ~ GLmR denote the cocycle of an action of F on M, 

obtained by considering a Borel section a: M ~ F(M).  If the action of r 

preserves a (measurable) subbundle E of T M  of dimension I and a is a section 

of p adapted to E (i.e., for almost every x e M, ( a ( x ) e l , . . . , a ( x ) e l )  spans E,  

where ( e l , . . . ,  e,,,) is the standard basis of Rm), then the associated cocycle has 

the form 
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where A O) and A (a) axe cocycles taking values in GLIR and GLm-tR, respectively. 

Conversely if for some section of p the cocycle takes the above form, there exists 

a r-invaxiant subbundle of dimension l, given by 

x C M ---} a(x)L,  L = span{e l , . . . , e , } .  

If M is orientable and u is a volume form preserved by r ,  then r acts as a 

group of automorphisms of the SLmR-principal bundle P C F ( M )  consisting of 

all a E F ( M )  for which u ( a e l , . . .  ,ae,,,) = 1. Let /~ be an ergodic invariant 

measure for the action of r .  Two sections a and a * of P are said to be equivalent 

if there is a Borel function ~: M ~ SL,nR for which a * = a o ~ at #-almost 

every point. Two cocycles axe said to be equivalent if they axe associated to 

equivalent sections. It can be shown (see [Z2], where a more general statement is 

proven) that an algebraic R-group L C SLm exists with the following property: 

A is equivalent to a cocycle taking values in LR but there is no equivalent cocycle 

taking values in L'R for a R-group L ~ which is a proper R-subgroup of L. LR is 

unique up to conjugacy in SLmR and its conjugacy class is the a lgeb ra i c  hull  

of the cocycle. The algebraic hull is c o m p a c t  if any of its representatives LR is. 

The algebraic hull for the invaxiant volume u can be defined as a map from the 

ergodic components of u to conjugacy classes of algebraic subgroups of SLmR. 

The following proposition is a consequence of the superrigidity theorem for 

cocycles ([Z21, [Z31). 

PROPOSITION 3.1: 

(1) Let M be an oriented, compact, smooth manifold of dimension m = n + k, 

k = O, 1. Let u be a volume form and r a lattice in SL,R,  n _> 3. Assume 

that F acts on M via diffeomorphisms that preserve u. Let t~ be an ergodic 

component of the measure det]ned by u and A: r x M ~ SLmR the cocycle 

for r associated to some measurable section of  P. Assume that the algebraic 

hull of  A is not compact. Then there exists a measurable section of  P,  

a: M ~ P,  and an automorphism a of  SL,R  such that for l~-almost every 

x E M and nil 7 E F, the cocycle associated with a has either one of  the 

following two forms: 

o -' . ( ' r , - ) - ( ' r )  ' 

where A is a cocycle taking values in a compact subgroup of  GLkR, e a 

cocycle taking va/ues in {+l},  and a an automorphism of SL,R.  
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(2) Consider the same conditions as in part (1), except that the aJgebraic hull 

of  A is now assumed compact. Assume moreover that the diffeomorphisms 

in r are afane for a C O connection V.  Then the action preserves a smooth 

invarlant metric. 

In order to state next lemma we need a few remarks. 

(1) A theorem in [P-R] implies that,  for any lattice r c SL,,R, one can find 

a Cartma subgroup H of SLnR for which H / H  f3 F is compact. It follows 

that there exists a free abelian group `4 C r of rank n - 1 whose elements 

are simultaneously diagonalizable over R. 

(2) The group of automorphisms of SL,~R is generated by the conjugations 

g ~ gh = hgh-] ,  h E SLnR and a(g) = (gt)-] .  In particular, i f`4 is a free 

abelian subgroup of SLnR of rank n - 1 which is diagonalizable over R, so 

is a(`4) for any automorphism a. 

LEMMA 3.2: Let {Vl,. . .  ,v,,} be a basis of R" consisting of  simultaneous eigen- 

vectors of a(`4), where a is some automorphism of SLnR. Define hi: ,4 ~ R \  {0} 

by the equation a(7)vi = Ai(7)vi for all 7 E `4. Then 

(x)  . . . . .  = 1 

(2) Given m = ( m , , . . . ,  m,,) e Z", define 

= a 7 1 ( 7 ) . . . . .  

Then given finitely many  integer vectors m(1),... ,m (r), all different from 

4- (1 , . . . , 1 ) ,  and any permutation s: { 1 , . . . , n }  ~ {1, . . .  , n ) ,  we can find 

7 6 , 4  such that A"(°(7 ) # 4-1, for all 1 < i < n and 

1 < AsO)(7) < " "  < i , (n-1)(7) ,  1 > A~(,,)(7). 

Proof." (1) follows from det a(7) = 1 and (2) from the co-compactness of ,4 in 

some Caf tan subgroup of SLnR. | 

Let a: M ~ P be the section of the bundle P obtained in Proposition 3.1 (we 

assume that the matrix on the left occurs; the other case is similar) and vi as in the 

previous lemma. Define the measurable vector fields Xi (x )  = a(x)vi ,  1 < i < n. 

Then for all 7 E ,4 we have 

T'r Xi(x) = , (% 
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where e E {4-1}. In fact, 

TT~:Xi(x ) = TTza(x )v  i = a(Tx ) o A(7  , x)vi 

= , , ( 'r~) , ( 'r ,  ~) , , ( -r)vi  = ,('r,  ~) ,~( 'r) , , ( 'r~) , ,~  

= ,('r, ~ ) ~ i ( - r ) x ~ ( ~ ) .  

In particular, applying Proposition 1.1, we obtain the following lemma. 

LEMMA 3.3: Assume the conditions of  Proposition 3.1, i tem (1). The action of  

`4 on M has Oseledee decomposition given by E1 (9""  (9 En+l, where Ei = RX i  

for i = 1 , . . .  ,n  and E~+I is a k-dimensional subbundle. Moreover for all ~/ E ,4 

and t~-almost every x, we have 

lira 1 log IIT~"~Xi(x)ll = log IAi(7)l, 
n---* 4-oo n 

lim 1 log [[TT~ZI[ = O, VZ 6 E ,+I(x )  \ {0}. 
n.--* -1- oo rt 

LEMMA 3.4: 

(i) 

(2) 

Let M be a connected, compact, smooth manifold of dimension m = n + k, 

k = 0,1. Let F be a l a t t i c e  in S L , R , n  >__ 3. Assume that r acts on 

M by afflne diffeomorphisms for a C r, torsion-free connection V (r > O) 

with bounded parallel transport. H the action does not preserve a smooth 

Riemannian metric, there exists a C r decomposition of T M ,  T M  = E1 $ 

• .. (9 En+l, which agrees with the one in Lemma (3.3) almost everywhere. 

Here we have dim Ei = 1 t'or i = 1 , . . .  , n, dim E,+I = k, all subbundles are 

V-parallel and A-invariant. The subbundle E defined as E = E1 (9""  (9 E ,  

is F-invariant. 

H we also assume that k = 1 and r ) 1, the following holds: There ex- 

ists a finite covering M ~ of M,  whose group Z) of deck transformations has 

cardinality [/:)[ _< 2 "+1, and a frame of C r vector fields X 1 , . . .  , X , + I  de- 

fined on M'  which are V-parallel (for the connection lifted from M, still 

denoted V )  so, in particular, M is V-fiat. I fF '  denotes the finite extension 

of F by 7), acting equivariantly on M ~ by V-affme diffeomorphisms and 

#: M'  --* F ( M ' )  the section o[ F ( M ' )  defined by a(x)ei = Xi ,  then there 

exists a homomorphism A : F ~ -~ GLn+IR so that 

TT~ o [a(x)] = a(x) o [A(~r)l, 
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for all x E M I and 7 E P ~. Moreover, after a change of  basis, A has the 

form 0) 
e 2 ( 7  ' 

where a is an automorp/z~sm of SLnR and el and e2 are homomorph/sms 

into {+1}. 
(3) The vector fields X1 , . . .  , Xn+I in item (2) commute: [Xi, Xj]  = 0 for aN i 

and j .  

Proof'. Item (1) follows from Lemmas 2.4 and 3.3. As for item (2), let Xi(x)  be 

any nonzero vector in Ei(z) .  Since Ei is parallel, for any C 1 loop l: [0,1] ~ M 

based at x, PiXi(x)  = ci( l )Xi(z)  for some number ci(1). Since V has bounded 

parallel transport,  ci(l) = +1 and, by continuity, the value depends only on the 

homotopy class [l]. Therefore we obtain a group homomorphism 

(c , , . . . ,  c,+1): , , (M,  x) -~ , z /2z  × . . .  × z / 2 z  
n + l t i m e s  

The kernel of this homormorphism defines a finite normal covering of M where 

Xi(x )  can be extended to a globally defined vector field using parallel transport  

(note that Xi is defined on M only up to sign). Lemma 2.1 implies that,  with 

respect to the frame on M ~ defined by X 1 , " -  , X ,+ I ,  the cocycle for the F ~ action 

does not depend on x, so it defines a homomorphism A: F ~ ---} GLn+IR, which 

must be of the form 

A(A  *) 
+1 or A1 " 

Let ~r : F ~ ---} F denote the projection. We wish to show that after postcomposition 

with an automorphism of GL,+IR,  there exist homomorphisms el, e2: F * ---* {+1} 

such that,  for all 7' E P', we have 

~ 2 ( 7 ' )  " 

(We thank S. Adams for providing the details of the remaining argument.) 

Let H '  denote the Zariski closure of the image of the map A: F ~ ---} GL,+I  

and let H := H'/A(ker,r) .  The composition of A: F' ---} H '  with the projection 

H '  ~ H gives a map that factors to a map F ~ H.  According to Proposition 
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3.1, part 2, A(F') is not finite. It follows that HR is not finite. By [M, Theorem 

6.15(i)(a), p. 332], H is semisimple. Let F ° denote the preimage of the identity 

component H ° of H; F ° is normal in F. 

Let L := H ° / Z ( H  °) denote the quotient o f H  ° by its center. It is a consequence 

of [Z3, Theorem 3.8] that no R-simple factor of L is R-anisotropic. By [M, 

Theorem 5.6, conclusion (b), p. 228] (applied to each R-simple factor of L), the 

map F ° --~ L~ extends to a continuous homomorphism SL,R ~ LR. This, in 

turn, extends to an R-homomorphism SLn ---* L. Since SLn is algebraically simply 

connected, we may lift this to a homomorphism SLn ~ H °. Composing this with 

the inclusion H ° C H~/A(kerTr) and applying algebraic simple connectedness 

again, we lift to an R-homomorphism SLn --* H t C_ GL,+I .  

By the classification of representations of infinite image of SLn in n ÷ 1 di- 

mensions, we see that,  after post composing with an automorphism of GLn+I, 

the image of SLn in GLn+I lies in the diagonal blocked matrix group SLn × (e}. 

And, consequently, we may assume that A(F ~) lies in the normalizer in GL,~+IR 

of SLnR × {e}. This normalizer is the group N := GLnR × GL1R. The compo- 

sition of A : F t ~ N followed by the projection of the reductive group N to its 

center has, by Kazhdan's property, precompact image. It follows that  A(F ~) lies 

in the diagonal blocked matrix group [{:t:I}SLnR] x {:t:1}. 

Let B denote the composition of A with the projection [{±I}SLnR] x {-t-1} --~ 

SL,,R. Note that  B(F ~) is not finite. We wish to show that,  after postcomposing 

B with an automorphism of GLn, there exists a homomorphism e : F' ~ {~1} 

such that,  for all ~/' e F', we have B(~') = lr('t')e('y' ). 

We now play the same game over again. The map F ~ ---* SL, /B(ker  ~') factors 

to F. The Zariski closure H1 of the image is infinite and the adjoint group of the 

connected component has no R-anisotropic factors; we may therefore apply [M, 

Theorem 5.6, conclusion (b), p. 228] once again. This time, however, comparison 

of dimensions shows that the image of F in SL, /B(ker  ~r) is Zariski dense. It 

follows that B has Zariski dense image. As ke r r  is normal in F ~ we conclude 

that B(ker ~r) is normal in SLn. 

We thus see that the map B : F ~ ~ SLn factors to a map C: F ~ PSLn 

with Zariski dense image. And, as we have seen, C" extends to a (surjective) 

R-homomorphism SLn ~ PSL, .  By postcomposing B with an automorphism of 

SLn, we may assume that this extension of C is the natural map SLn ~ PSLn. 

We now have two maps B : F I --* SL,R and ~r : F I ~ 7r C_ SL,,R. The maps 
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obtained by composing B and Ir with the projection SL ,R  ~ PSLnR coincide. 

Therefore, by multiplying B by a homomorphism e : F' --4 {+1}, we may assume 

that  B = ~r, and we are done. | 

4. P r o o f  o f  P r o p o s i t i o n  0.3 

For the rest of this paper, we shall assume all the conditions (and consequences) 

of Lemma 3.4 items (1) and (2). We shall focus attention on the action of a 

single diffeomorphism 7 E A, which we choose to have the following properties: 

The Oseledec decomposition for 7 (which is a C r decomposition) is T M  = E1 @ 

• " • E n + I , E i  = R X i ,  and  T T X  i = "4-exiXi o 7, where 

X,,+I = O, X ,  < O, 0 < Xl < "'" < Xn -1 ,  Xl + " "  + Xn = O. 

That  such 7 can be found follows from Lemmas 3.2 and 3.4. Since the vector fields 

X i  (defined on M up to sign) commute pairwise, we have integrable subbundles: 
E0 def . . . . . .  E.+ I ,  E + def E1 • • E . - 1 ,  E -  def E . ,  E °+ def= E0 @ E+ ' E0_ clef= 

E ° @ E - ,  and E d~_=t E1 0 " "  @ E,,. The corresponding foliations will be denoted: 

£ °, £ +, £ - ,  £ °+, £ ° - ,  respectively. So(E °, £), (E +, £ ° - ) ,  ( £ - ,  £ o + ) a r e  pairs 

of transversal, C r foliations. Let ~ denote any of the above foliations and 2-(x) 

the leaf of ~ through x E M. If B is a subset of M and x E B, denote by ~'B(x) 

the path  connected component of 2"(z) 0 B that  contains z. 

By a fo l ia t ion  b o x  we mean an open set B C M for which there exists a 

homeomorphism h : D + x D -  × D O --* B, where D o = D -  = the open unit 

interval in R, D + = the open unit disc in R "-1,  and the leaves of the foliations 

by discs D +, D - ,  D O in D + × D -  × D O correspond under h to the leaves of 

£+, £ - ,  and £0. For all x • B, Y • £B(x), and z • E°(x),  define 

7./0,y(z) d_cf the unique point in £B(z) f3 £~(y). 

7"(°,~ : £°B(x ) ~ g ~ ( y )  is a C~-diffeomorphism. Similarly define for x • B, 

• n +,,, : --, c (v) for v • eB( ) --, For 

" .  B - - ,  e Cx), v = + ,  0 , - ,  a fixed x • B, these maps define C r projections r x. 

and 

is a C ~ diffeomorphism. If M '  is a covering of M, the lift to M'  of the above 

foliations will continue to be denoted by the same symbols. 
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LEMMA 4.1: Let M ~ be any finite covering o£ M. Then M'  contains a dense set 

of points "P with the following property: For any x E P there exists k = k(x) E N 

such that 7k(e° (x) )  = ¢0(x).  

Proof: This fact follows from a standard dynamical argument, which we repro- 

duce here. First note that for any X E E+(x) and Y E E-(x) ,  

IITT~'IX[[ < AIIXll, A = , - m i . { x ,  ..... x . - , )  < 1 

[ITT.YII < vl lYl[ ,  ~ = e xn < 1 

Here II. II is the norm associated to the Riemannian metric for which {Xi} is 

orthonormal. In particular, if y E E + (x) and d(x, y) denotes the distance function 

determined by integrating It" I[ we have 

d(7-kx, 7-ky) <_ Akd(x,y), i f y  E C+(z), 

d(vkz, Tky) <_ l, kd(z,V), i f y  E £ - ( x ) .  

Poincax6's recurrence theorem ([W]) asserts that for any measurable S C M 

and almost all x E S, there are infinitely many n E N such that 7-n(z)  E S. 

Let B be a foliation box, U2~(xo) a closed ball of radius 2e > 0 centered at x0, 

entirely contained in B. Let x E U~(xo) for which we can find n l ,n2 , ' . .  E N 

so that 7 - n ' ( x )  E Uc(xo). Since 7 -1 contracts distances in C +, we can find 

ni sufficiently large so that 7-"'(U2~(x0) n £+(xo)) has diameter < e, hence it 

is contained in U2,(x0). By projecting points of 7-" ' (U2,(x0)  n ~+(x0)) into 

U2~(x0) O E+(x0) via 7r+ 0 we have constructed a continuous map of a closed disc 

in C+(x0) into itself. But such a map must have a fixed point, say y E B, for 

which 7 - " ' ( ~ - ° ( y ) )  = C-°(y),  or 

7- , (e -0(y) )  = ~-° (v  ). 

A similar argument shows that there exists z E B and k E N for which 

7k(E+°(z)) = E+°(z). 

If q denotes the minimum common multiple of k and ni, and x E B is any point 

in £+°(z) O E-°(y) ,  then 7q(E°(z)) = C°(x). Since the size of B can be-chosen 

arbitrarily small, the lemma follows. I 
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LEMMA 4.2: M is a fiber bundle over a / l a t  n-dimensional  torus wi th  F-invariant 

fibers which are dif feomorphic to T 1, so that the action factors through the 

quotient  M / T  1 = T n. 

Proof." Let M ~ be the covering of M given in Lemma 3.4 i tem (2). We first 

show that  M t is a Tl-principal bundle over a closed manifold N whose fibers are 

F-invariant. We note that  the vector field X °, denoted X,,+l in that  lemma, is 

F-invariant, so the main point here is to verify that  its integral lines (the leaves 

of C °) close up into circles. 

Denote by ~v :  M ~ _., M s the flow of Y = a lX1  + . . "  + a n X n  + aoX  °, where 

ao,ai are constants. Also define the volume form w -- X~ A . . .  A Xn* A X °*, and 

the form v = X~ A .- .  A X~*, v being a volume form on the leaves of C. The 

connection ~7, the foliations, w, and u are all ~o~-invariant, a fact that  readily 

follows from the commutat ion of the above vector fields. Let D denote an open 

disc contained in a leaf of C. Poincar~'s recurrence theorem implies that  almost 
X 0 all z E D (say, with respect to g) is a recurrent point for the flow ~ -- ~ t  . It 

follows from the existence of a recurrent point that  all points of D are recurrent. 

In fact, if x E D and if for t l , t ~ , . . .  --~ oo we have ~t , ( x )  E D and ~t , (x)  --~ x, 
def 

then for any vector field Y as above and y = ~V(x), 

In particular,  due to Lemma 4.1, there is a recurrent point x of ~t in D and a 

number  k = k(x) E N \ {0} for which 7k(C°(x)) = C°(x). For such a point one 

has 7k(x) = ~r (x )  for some ~" E R. Define the diffeomorphism h = ~a-T o 7 k. 

Then h has the following properties: 

(1) h(x)  = x, h :  C(x) ~ C(x) is a diffeomorphism, 

(2) X~ = -t-AiXi, where Ai = e kx' (since ~t preserves Xi ,  and 3' has the claimed 

property)  

(3) h o ~ ,  = ~ s o h  for all s E R (since 7 preserves X0). We claim that  

there exists to E R for which ~oto(x) = x. In fact let ~t , (x)  be a sequence 

converging to x. Then ~t , (x)  = ~ , , (hx)  = h~t , (x ) .  So we have a sequence 

of points converging to x, all of which are fixed by h. On the other hand (2) 

implies that  any fixed point of hIe(~) is hyperbolic. But a hyperbolic fixed 

point is isolated (a consequence of Grobman-Har tman ' s  Theorem [P-M]). 

Therefore for some ti we have ~t , ( x )  = x. (We learned this nice little trick 

from A. Katok.) 
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Let 40 be the smallest positive number for which ~ot0(x) = : .  Since ~to com- 

mutes with any other ~o[, it follows that ~t0 is the identity (and to the smallest 

positive number for which for any other y ~0t0(y) = y). Denote T 1 = R/t0Z. 

Then T 1 acts freely on M'  according to the expression 

(t(mod to),z) E T 1 x M' --, ~t(z) E M', 

and the orbits of this action are I"-invariant. By projecting under the covering 

map p: M '  --, M we see that M itself is fibered by r-invariant circles (although 

the action of T 1 may no longer be defined in M since X ° may be defined only up 

to sign), h factors through the quotient and, due to (2) above, it defines there 

an Anosov diffeomorphism. It follows from [F] that M / T  1 is homeomorphic to a 

toms,  hence diffeomorphic to a V-flat toms. 

The existence of a fixed point for the action of F on M / T  follows from [H, 

Theorem 2.22] (in the terminology of that paper, we have shown that this is a 

C a r t a n  ac t ion) .  Therefore F fixes a fiber of M/T.  According to Theorem 0.1, 

the action of F on the fixed fiber must be finite. So there exists a finite index 

subgroup of 1" which fixes a point in M (in fact, the whole fiber). II 

Proposition 0.3 follows now from Lemmas 3.4 and 4.2. 
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